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Abstract
The asymptotic evaluation and expansion of the Keesom integral, K(a), is
discussed at some length in Battezzati and Magnasco (2004 J. Phys. A: Math.
Gen. 37 9677; 2005 J. Phys. A: Math. Gen. 38 6715). Here, using standard
identities, it is shown that this triple integral can be reduced to a single integral
from which the asymptotic behaviour is readily obtained using Laplace’s
method.

PACS number: 31.15.−p

The Keesom integral

The Keesom integral [3], defined by

K(a) =
∫ π

0

∫ π

0

∫ 2π

0
eaF(θA,θB ,ϕ) sin(θA) sin(θB) dϕ dθA dθB, (1)

where

F(θA, θB, ϕ) = cos(ϕ) sin(θA) sin(θB) − 2 cos(θA) cos(θB),

arises when computing the average value of the interaction between two dipoles undergoing
thermal motion. The angles θA, θB and ϕ are the angles describing the mutual orientation of
the dipoles. On average, the dipole moments assume orientations leading to attraction. Note
that K(a) = K(−a) (put θA → π − θA or θB → π − θB and ϕ → π − ϕ in equation (1) and
change the limits of integration accordingly).

To reduce this integral, first compute the integral over ϕ using equation 9.6.16 of [4],∫ 2π

0
es cos(ϕ) dϕ = 2πI0(s),

where I0(s) is a modified Bessel function of the first kind of order 0. Changing variables,
x = cos(θA)x, y = cos(θB), one obtains

K(a) = 2π

∫ 1

−1

∫ 1

−1
e−2axyI0

(
a
√

1 − x2
√

1 − y2
)

dx dy.
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Next, using equation 6.616.5 of [5],∫ 1

−1
eaxI0(b

√
1 − x2) dx = 2 sinh(

√
a2 + b2)√

a2 + b2
,

the Keesom integral reduces to single integration,

K(a) = 4π

∫ 1

−1

sinh(a
√

3y2 + 1)

a
√

3y2 + 1
dy = 8π√

3a

∫ 2

1

sinh(at)√
t2 − 1

dt.

No further reduction appears possible. However, computing this integral numerically is
straightforward and the results agree with those in table 1 of [1]. Using Laplace’s method [6]
one immediately obtains the large-a asymptotic expansion directly,

K(a) ∼ 4π

3

e2a

a2

(
1 +

2

3a
+

1

a2
+

22

9a3
+

227

27a4
+ · · ·

)
,

which agrees with equation (30) of [1].
Since the axially symmetric multipoles are proportional to the bipolar spherical harmonics,

and the Keesom integral is just the angular average of the exponential of these multipoles, one
would expect similar reductions for the generalized Keesom integrals discussed in [7].
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